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Abstract

Phase-plane techniques are used to analyze a quadratic system of ordinary differential
equations that approximates a single relaxation-time system of partial differential equations
used to model transient behavior of highly elastic non-Newtonian liquids in shear flow
through slit dies. The latter one-dimensional model is derived from three-dimensional
balance laws coupled with differential constitutive relations well-known by rheologists.
The resulting initial-boundary-value problem is globally well-posed and possesses the key
feature: the steady shear stress is a non-monotone function of the strain rate. Results of
the global analysis of the quadratic system of ode’s lead to the same qualitative features
as those obtained recently by numerical simulation of the governing pde’s for realistic
data for polvmer melts used in rheological experiments. The analytical results provide
an explanation of the experimentally observed phenomenon called spurt; they also predict
new phenomena discovered in the numerical simulation; these phenomena should also be
observable in experiments. . . .
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1. Introduction

Tre purpose of this paper is to analyze novel phenomena in dynamic shearing flows

of non-Newtonian fluids that are important in polymer processing [17]. One stnkmg phe-
normernon, called “spurt,” was apparently first observed by Vinogradov et al. [19] in ex-
periments concerning quasi static flow of monodispersive polyisoprenes through capillaries
or equivalently through slit dies. They found that the volumetric flow rate increased dra-
masically at a critical stress that was independent of molecular weight. Until recently,
spurt has been associated with the failure of the flowing polymer to adhere to the wall [5].
The focus of our current research is to offer an alternate explanation of spurt and related

phenomena.
Ll.cerstanah-b these phenomena has proved to be of significant physical, mathemati-
al. and computational interest. In our recent work [12], we found that satisfactory expla-

nation and modeling of the spurt phenomenon requires studying the full dynamics of the
equaticas of motion and constitutive equations. The common and key feature of constitu-
tive models that exhibit spurt and related phenomena is a non-monotonic relation between
the stead" shear stress and strain rate. This alicws jumps in the steady strain rate to form
when the driving pressure gradient exceeds a critical value; such jumps correspond to the
sudden increase in volun_etr.c flow rate observed in the experiments of Vinogradov et al.
The governing systems used to model such one-dimensional flows are analyzed in [12]
by numerical techniques and simulation. and in the present work by analytical methods.
The svstems derive from fully three-dimensional differential <onstitutive relations with m-
relaxation times (based on work of Johnson and Segalman (8] and Oldroyd [16]). They
are evolutionary. globally well posed in a sense described below, and they possess discon-
tinuous steady states of the type mentioned above that lead to an explanation of spurt.
The governing systems for shear flows through slit-dies are formulated from balance laws
in Sec. 2. ‘

Specifically. we model these flows by decomposing the total shear stress into a polymer
contribution. evolving in accordance with a differential constitutive relation with a single
reiaxation time and a Newtonian viscosity contribution (see system (JSO) in Sec. 2.). The
flows can also be modelled by a system based on a differential constitutive law with two
widelr spaced relaxation times (see system (JSO,) in [13].) but no Newtonian viscosity e~
contribution. Numerical simulation [9. 12] of transient flows at high Weissenberg (Debo- .. K
raiz) number and very low Rernolds number using the model (JSO) exhibited spurt, shape

and hysteresis: furthermore. it predicted other effects, such as latency, normal .

mernor:.
stress osciilations. and molecular weight dependence of hysteresis, that should be analysed

further and tested in rheological experiment. or /
In earlier work. Hunter and Slemrod [7] used techniques of conservation laws to study:
the qualitative behavior of discontinuous steady states in a simple one-dimensional vis- 0
coelastic model of rate type with viscous damping. They predicted shape memory and |,
hysteresis effects related to spurt. A salient feature of their model is linear instability and
loss of evolutionarity in a certain region of state space.
The objective of the present paper is to develop analytical techniques, the resultsof @/ |

wnich verify these rather dramatic 1mphc:mons of numerical simulation. Based on scaling v Codes

introduced in [12], appropriate for tle highly elastic and very viscous polyisoprenes used in "‘i/"
1a
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the spurt-experiment, we are led to study the following pair of quadratic autonomous ordi-
nary differential equations that approximates the governing system (JSO) in the relevant
range of physical parameters for each fixed position in the channel:

&=(Z+1)<T;“>-a,

Z=—0<T—0)—Z.
€

Here the dot denotes the derivative d/dt, T is a parameter that depends on the driving
pressure gradient as well as position z in the channel, and € > 0 is a ratio of viscosities.
Sysiemns (1.1) is obtained by setting = 0 1n the momentum equation in system (J/SO); this
approximation is reasonable because « is at least several orders of magnitude smaller than
. We show that steady states of system (JSO), some of which are discontinuous for non-
monotone constitutive relations, correspond to to critical points of the quadratic system.
We deduce the local characters of the critical points, and we prove that system (1.1) has
no periodic orbits or closed separatrix cycles. Moreover, this system is endowed with
a natural Lvapunov-like function with the aid of which we are able to determine the
global dynamics of the approximating quadratic system completely and thus identify its
globally asymptotically stable crical points (i.e. steady states) for each position z. This
analysis is carried out in Sec. 3 When a, the ratio of Reynolds to Deborah numbers, is
strictly positive, the stability of discontinuous steady states of system (JSO) remains to
be settled. Recently, Nohel, Pego and Tzavaras (13] established such a result for simple
model in which the polymer contribution to the shear stress satisfies a single differential
constitutive relation: for a particular choice. their model and system (JSO) with @ > 0
have the same behavior in steady shear. Their asymptotic stability result, combined with
numerical experiments and research in progress, suggest that the same result holds for the
full svstem (JSO), at least when «a is sufficiently small.

In Sec. 4..the analysis of Sec. 3. is applied to each ncint z in the channel, allowing
us to explain spurt. shape memory, hysteresis, and othc: eflects originally observed in the
numerical simulations in terms of a continuum of phase .~ .raits. We discuss asymptotic
expansions of solutions of systems (JSO) and (JSOz) of Ref. [13] in powers of ¢ that enable
us to expiain latency (a pseudo-steady state that precedes spurt). The asvmptotic analysis
also permits a more quantitative comparison of the dynamics of the two models when ¢ is
sufficiently small. In Sec. 5., we discuss physical implications of the analysis, particularly
those that suggest new experiments. In Sec. 6., we draw certain conclusions. Although the
analvsis in this paper applies only to the special constitutive models we have studied, we
expect that the qualitative features of our results appear in a broad class of non-Newtonian
fuids. Indeed. numerical simulation by IKolkka and lerley (10] using another model with a
single relaxation time and Newtonian viscosity exhibits very similar character.

(1.1)




2. A Johnson-Segalman-Oldroyd Model for Shear Flow

The motion of a fluid under incompressitle and isothermal conditions is governed by
the balance of mass and linear momentum. The response characteristics of the fuid are
embodied 1n the constitutive relation for the stress. For viscoelastic fluids with fading
memory, these relations specify the stress as a functional of the deformation history of the
fluld. Many sophisticated constitutive models have been devised; see Ref. [2] for a survey.
Of particular interest is a class of differential models with m-relaxation times, derived in a
thres-dimensional setting in Refs. [12] and [13]; these models can be regarded as a special
cases of the Johnson-Segalman model [S]when the memory function is a linear combina-
tion of m-decaying exponentials with positive coeficients or of the Oldroyd differential
constitutive equation [16].
ential properties of constitutive relations are exhibited in simple planar Pciseuille

Jow. We study shear flow of 2 non-Newtonian fluid between parallel plates, located

shear
at r = =4/2. with the flow aligned along the y-axis, symmetric about the center line, and
driven by a constant pressure gradient f. We restrict attention to the simplest model of a
single relaxation-time dirferential model that possesses steady state solutions exhibiting a
non-mornotone reiation between the total steady shear stress and strain rate, and thereby
reproduces spur: and related phenomena discussed below. The total shear stress T is
decomposed into a polymer contribution and a Newtonlan viscosity contribution. When
resiricted to one space dimension the initial-boundary value problem., in non-dimensional
with distance scaled by h, governing the flow can be written in the form (see Refs. [9,

urnitcs

12):
QU — O =SV + f
ot~ (Z + Vv, = -0, (JSO)
Zy+ov, =2

on the interval [—1/2.0], with boundary conditions

v(=1/2,¢) =0 and v(0,t) =0 (BC)

and 1mtial conditions

vl(z.0) =volz), o(z.0) =ao(z), and Z(z.0)=2Zy(z),on~1/2<z<0; (IC)
svmmetrr of the Sow and compatibility with the boundary conditions requires that
val —=1/2) = 0. vy{0) = 0 and y(0) = 0.

Tlhe =volution of o. the polymer contribution to the shear stress, and of Z, a quantity
propor:ional to the normal stress difference. are governed by the second and third equations
in system (JSO). As a result of scaling motivated by numerical simulation and introduced
in Ref. [12]) there are only three essential parameters: a is a ratio of Reynolds number to
Deborah number. ¢ is a ratio of viscosities. and f is the constant pressure gradient.

When z =0.and Z + 1 > 0, system (JSO) is hyperbolic, with characteristics speeds
+(Z + 1)/a]'* and 0. Moreover. for smooth intial data in the hyperbolic region and

—_—

compatible with the boundary conditions. techniques in {18] can be used to establish
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global well-posecness (in terms of classical solutions) if the data are small. and finite-
time blow-up of classical solutions if the data are large. If ¢ > 0, system (JSO) for any
smooth or piece-wise smooth data; indeed. general theory developed in [13] (see Sec. 3
and particularly Appendix A) yields global existence of classical solutions for smooth
inizial data of arditrary size. and also existence of almost classical, strong solutions with

JORRRTEIN

...... .

allows one to prescribe discontinuous initial data of the same type as the discontinuous
tucied in this paper.

ady-state solutions of system (JSO) play an important role in our discussion.
soiution. denoted by T, 7, and Z, can be described as follows. The stress components
anc Z are related to the strain rate U, through the relations

Vg = 1
=—, Z+l=—= 2.
1+7; T T+ (2.1)

Therefore. the steady total shear stress T := 7 + €7, is given by T = w(7,), where
s

w(s) 1= T +es. (2.2)
The properties of w. the steady-state relation between shear stress and shear strain
rate. are crucial to the behavior of the flow. By symmetry, it suffices to consider s > 0.
For ail ¢ > 0. the function w has inflection points at s = 0 and s = /3. When ¢ > 1/8,
the funcsion w is strictly increasing, but when ¢ < 1/8. the function w is not monotone.
Lack of monotonicity is the fundamental cause of the non-Newtonian behavior studied in

[

(A

this paper: hereafter we assume that ¢ < 1/§.

The graph of w is shown in Fig. 1. Specifically, w has a maximum at s = sy
and a minimum at s = S, where it takes the values Ty 1= w(sy) and Ty := w(snm)
respectivelr. As z — 1/S. the two critical points coalesce at s = /3.

The momentum equation. together with the boundary condition at the centerline.
impiies that the steady total shear stress satisfies T = — fr forevery z € [—%, 0]. Therefore,
the steady velocity gradient can be determined as a function of z by solving

w(T;)=—fz. (2.3)
Eguivalently. a steady state solution U, satisfles the cubic equation P(%:) = 0, where
T .2 eal
P(s)=ecs® ~Ts*+(1+2)s-T. (2.4)

The steady velocity profile in Fig. 2 is obtained by integrating v, and using the boundary
condizion at the wall. However. because the function w is not monotone. there might
be up to three distinct values of T, that satisfy Eq. (2.3) for any particular z on the
interval '=1/2.0]. Consequently, ¥, can suffer jump discontinuities. resulting in kinks in
the velocitr profile (as at the point z. in Fig. 2). Indeed. a steady solution must contain
such a jump if the total stress Twall = f/2 at the wall exceeds the total stress TM at the

local maximum M in Fig. 1.

Finallv., we remark that the flow problem discussed here can also be modelled by a
systen based on a differential constitutive law with two widely spaced relaxation times
but no Newtonian viscosity contribution (see system (JSOz) in Sec. 2. of (13]); with an

aporopriate choice of relevant parameters. the resulting problem exhibits the same steady
states and the same characteristics as (JSO).




Fig. 1: Total steady shear stress T vs. shear strain rate &, for
steady flow. The case of three critical points is illustrated; other
possibilities are discuss « in See. 3.

3. Phase Plane Analysis for System (JSO) When a =0

When « is not zero. numerical simulation developed in [9, 11, 12] discovered striking
phenomena in shear flow and suggested the analysis that follows. A great deal of infor-
mation about the structure of solutions of system (JSO) can be garnered by studying
a quadratic system of ordinary differential equations that approximates it in a certain
parameter range. the dynamics of which is determined completely. Motivation for this ap-
proximation comes from the following observation: in experiments of Vinogradov et al. [19],
a is of the order 107!%; thus the term av, in the momentum equation of system (JSO)
is negligible even when v, is moderately large. This led us to the approximation to sys-

tem (JSO) obtained when a = Q.

When a = 0, the momentum equation in system (JSO) can be integrated to show
that the total shear stress T := ¢ + v, coincides with the steady value T(z) = —fz. Thus

T =T(z) is a function of z only, even though o and v, are functions of both z and ¢. The
remaining equations of system (JSO) yield, for each fixed r, the autonomous, quadratic,

-6-
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Fig. 2: Velocity profile for steady flow.

planar system of ordinary differential equations

(7=(Z+1)(—T—;—(-7-)-—a,

Z=—0<T_U)-Z.
€

Here the dot denotes the derivative d/dt. We emphasize that for each F, a different
dvnamical system is obtained at each z on the interval {—~1/2.0] in the channel because
T = - fz. By symmetry, we may focus attention on the case T > 0; also recall from Sec. 2
that = < 1/8: these are assumed throughout. The dynamical system (3.1) can be analyzed
completely by a phase-plane analysis outlined below; the reader is referred to Sec. 3 in {13]
for further detaiis. Here we state the main results.

The critical points of system (3.1) satisfy the algebraic system

(3.1)

(Z+1+s)<%—1)+e=0,

;(; N.z-0.
T




These equations define, respectively, a hyperbola and a parabola in the ¢-2 plane; these
curves are drawn in Fig. 3, which corresponds to the most comprehensive case cof threc
critical points. The critical points are intersections of these curves. In particular, critical
points llein the strip 0 < ¢ < T.

Fig. 3: The pnase plane in the case of three critical points.

Eliminating Z in these equations shows that the o-coordinates of the critical points
satisfy the cubic equation Q(o/T) = 0, where

Q&) := [T?-g(f—l)-{—li-e} (E-1)+e¢. (3.3)
A straightforwvard calculation using Eq. (2.4) shows that
= 7 B
P(v:)=P <T o') = —E-Q(O'/T) . (3.4)

Thus each critical point of the system (3.1) defines a steady-state solution of system (JSO):
such a solution corresponds to a point on the steady total-stress curve (see Fig. 1) at which
the total st.ess is T(z). Consequently, we have:




Proposition 3.1:

For each position r in the channel and for each € > 0, there are three possibilities:
(1) there is a single critical point A when T < Tm,

(2} there is also a single critical point C f T > T pr:

(3) there are three critical points A, B, and C when T < T < T .

For simplicity, we ignore the degenerate cases, where T = T p; or T = T'm, in which
two critical points coalesce.

To determine the qualitative structure of the dynamical system (3.1), we first study
the nature of the critical points. The behavior of orbits near a critical point depends
on the linearization of system (3.1) at this point, i.e., on the eigenvalues of the Jacobian
matzix J associated with Eq. (3.1}, evaluated at the c“cxca.l point. To avoid solving the
cubic equation Q(o/T) = 0, the character of the eigenvalues of J can be determined from
the signs of the trace of J denoted by TrJ, the determinant of J denoted by DetJ. and
the discmiminant of J denoted by Discrm J at the critical points. We omit these tedious
calculations. a result of which is a useful fact: at a critical point, e DetJ = Q'(¢/T). This
relation is important because Q' is positive at 4 and C and negative at B. To assist tke
reader, Fig. 3 shows the hyperbola on which ¢ = 0, the parabola on which Z = 0 [see
Egs. (3.2)], and the hyperbola on which Discrm J vanishes. As a result of the analvsis

V] —-J

above. we draw the following conclusions:

(1) TrJ < 0 at all critical points:

(2) DetJ >0 at A and C, while DetJ < 0 at B; and

(3) Discrm J > 0 at 4 and B, whereas Discrm J can be of either sign at C. (For typical
values of ¢ and T, DiscrmJ < 0 at C; in particular. DiscrmJ < 0 if C is the only
critical point. But it is possible for Discrm J to be positive if T is sufficiently close to
Tm.)

Standard theory of nonlinear planar dynamical systems (see. e.g., Ref. [3. Chap. 15{) now

establishes the locul characters of the critical points 4, B, C in Proposition 3.1:

Proposition 3.2:
(1) 4 Is an attracting node (called the classical attractor);

(2) B is a saddle point:
(3) C is either an attracting spiral point or an attracting node (called the spurt attractor).

The next task is to determine the global structure of the orbits of system (3.1). In
this direction. we modify an argument suggested by A. Coppel [4] and establish the cru-
cial result. the proof of which involves a change in the time scale and an application of

Bendixson's theorem:

Proposition 3.3:
Syvstem (3.1) has neither periodic orbits nor separatrix cycles.

To understand the global qualitative behavior of orbits. we construct suitable invariant
sets. In this regard, a crucial tool is that system (3.1) is endowed with the identity (3.1)

—d-{a’+(Z+1)'~’} ==2[c*+(Z+1)7-1%]. (3.5)

-9-




Thusthe function VI £) = 0% +(Z +1)" serves as a Lyapunov function for the dynamical
5;.'5:3::1 Notice tha identity (3.5) is independent of T and ¢

Let [ cenote the circle on which the right side of Eq. (3 5) vanishes, and let C, denote
thecirzle siradivsrcenterecat o = 0and Z = ~l.ie. Cr:={(0,2Z) : V(0,2) = r,r > 0};
each (. is a level set of V. The circles [ and C are shown in Fig. 4, which corresponds
* *he case of a single critical point, the spiral point C. Eq. (3.5) also implies the crtical
ints of system (3.1) leon I'. If r > 1, T lies strictly inside Cr. Consequently, Eq. (3.3)
ws that the dv 'ﬂa:m'cal system (3.1) flows inward at points along C.. Thus the interior
: I invariant set for each r > 1. Furthermore, the closed disk bounded by

CAnVarian

cl O, is a posiz
C..waichis the ! me:sec:;on of these sets, is also positively invariant. Therefore the above

LIRE

Proposition 3.4: Each closed disk bounded by the circle C.,r > 1 is a positively

L'I'v'CL."ZC‘._’Z: Sel oI the svstem (J.‘/.

ombined with identification of suitable invariant sets were used to
re f m.e OthS of system (3. 1) 1n the cases of one a.nd three

i
47
{2
@]
el
P
N0
« rq
I3
t
o
4]
2]

RN i.e., the set of points that low toward 4 as t — oc. comprises
those polnts on the same side of the stable manifold of B as is A: points on the other side

':':: of ariraction of C. Moreover, the arc of the circle I' through the origin.
s redection B 1s contained in the basin of attraction of A. I_n particular.

PQOYVS P

manifold for B cannot cross its boundary, so that it cannot cross I between B

Al grclizaznive fectures of the dynamics of system (8.1) (ezcept possidly whether C 13 a
node or 2 focue cermy over o one that approzimates the system (JSOs) tn the case of two

widely separazed relezation times (see system (4.3)in [13]).

1
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1

4: The phase plane when the spurt attractor C is the only
critical point.

1. Qualitative Features of (/SO) Based on Phase Plane Analysis

Thre discussion that fuilows sketches an explanation of recent numerical simulations of
(/SO described in Refs. [9. 12]. These exhibited several effects related to spurt: latency,
shape memory, and hysteresis. Fig. 7 shows the result of simulating a “quasi-static”
loading sequence in which the pressure gradient f is increased in small steps, allowing
suficient time between steps to achieve steady flow [9]. The loading sequence is foilowed
by a similar quasi-static unloading sequence. in which the driving pressure gradient is
decreased in steps. The initial step used zero initial data. and succeeding steps used the
resuits of the previous step as initial data. The resulting hysteresis loop includes the shape

rermory predicted by Hunter and Slemrod [7] for a simpler model by a different approach.
The width of the hysteresis loop at the bottom can be related directly to the molecular
weignt of the sample [9].

We explain spurt, shape memory, hyster=sis and latency. We consider experiments
of the following type: the flow is initially in a steady state corresponding to a forcing
f,, and the forcing is suddenly changed to f = f, + Af. We call this process “loading”
(resp. “unloading™) if Af has the same (resp. opposite) sign as f,. The initial flow can
be described by specifying, for each channel position z, whether the flow is at a classical

-11-




Fig. 5: The orbit through origin when the spurt attractor C is the
oniv critical point.

attractor A (z is a “classical p ‘nt”) or a spurt attractor C (z is a “spurt point”) for the
system (3.1) with T = —f,z. We shall say that any point lying on the same side of the
stable manifold of B as is A lies on the “classical side”; points lying on the other side are
said to be on the “spurt side.” The outcome of the experiment depends on the character of
the phase portrait with T = —fz. To determine this outcome, we need only decide when
a classical point becomes a spurt point or vice versa.

The principle mathematical properties of the dynamical system (3.1) that determine
the outcome of loading and unloading experiments are embodied in the following conse-

quence of the phase plane analysis.

Proposition 4.1:
(1) A classical pont .ig for the initial forcing f, lies in the domain of attraction of the

classical attractor # ~ f, provided that A exists (i.e., IFz| < Ta);

(2) A spurt point Cy fur .we initial forcing o lies in the domain of attraction of the spurt

attractor C for f unless (a) C does not exist (ie., Ifz| < T—m_), or (b) C lies on the
classical side of the stable manifold of the saddle point B for f.

Consider starting with 70 = 0 and loading to F > 0. Thus the initial state for each z

-12-
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Fig. 6: Phase portrait in the case of three critical points, with C
being a spiral.

lies at the origin o =0, Z = 0. Then according to 4.1(1) above, each z € [-1/2, 0] such
that fiz! < Ty is a classical point, while the = for which f|z| > T are spurt points
(because there is no classical attractor). Consequently, we draw two conclusions:

Proposition 4.2:

(a) If che forcing is subcritical (i.e., f < Tcm := 2T 3 ), the asymptotic steady flow is
entirely classical.

(b) If the forcing is supercritical (F > F.ui), there is a single kink in the velocity profile
(see Fig. 2), located at z. = —~Ta/f; those z € [—1/2.z.), near the wall, are spurt
points, whereas z € (., 0], near the centerline, are classical.

The solution in case (b) can be described as “top jumping” because the stress T.=Tyu
at the kink is as large as possible, and the the kink is located as close as possible to the
wall. _ '
Next. consider increasing the load from fo>0to f> fo- A point z that is classical
for f, remains classical for f unless there is no classical attractor for T = —fz. te,
flz! > Ty. A spurt point z for Fo, on the other hand, is always a spurt point for f. As
a result. a point in z in the channel can change only from a classical attractor to a spurt

~-13-
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Fig. 7: Hysteresis under cyclic load: normalized throughput 6Q
vs. wall shear stress Tway (9]

attractor. and then only if f|z| exceeds T yr. When f is chosen to be supercritical, loading

causes the position z, of the kink in Fig. 2 to move away from the wall. but only to the

extent that it must: a single jump in strain rate occurs at z, = ~T st/ f, where the total

stress is 1. = 1 4. These conclusions are valid. in 1 particular, for a quasi-static process of
gradually increasing the load from f0 =0 to f > fCm

Now consider unloading from f0 > 0 to f < fo, assume, for the moment, that f is
posicive. Here, the initial steady solution need not correspond to top jumping. For this
type of unloading, a point z that is classical for fo, always remains classical for f: the
classical attractor for f exists because flz| < folz|. By contrast, a . spurt point z for fo
can become classical at f. This occurs if: (a) the total stress T = —fz falls below T m; or
(b) the spurt attractor Cy for T = —f, lies on the classical side of the stable manifold of

the saddle point B for 7 = —fz (see Proposition 4.1(2b)).
Combining the analysis of loading and unloading leads to the following summary of

quasi-static cycles and the resulting flow hysteresis.

Kinks move away from the wall under top jumping loading; they move toward the wall
under bottom jumping unloading; otherwise they remain fized. The hysteresis loop opens
from the point at which unloading commences; no part of the unloading path retraces the

=14-




locding path until point d in Fig. 7.

To explain the latency effect that occurs during loading, assume that ¢ is small. It is
readily seen that the total stress T at the the local maximum M is 1/2 + O(¢), while
he local minimum m corresponds to a total stress Tm of 2./€[1 + O(e)]. Furthermore,
cz that T(z) = O(1), o = T + O(£) at an attracting node at A, while o = O(e)

atiractor C (which is a spiral). Consider a point along the channel for which
T s so that the only critical point of the system (3.1) is C, and suppose that that
Then the evolution of the system exhibits three distinct phases, as indicated in
: aninitial “Newtonian” phase (O to N); an intermediate “latency” phase (V to §);
final “spurt” phase (S to C).

Tke Newtonian phase occurs on a time scale of order ¢, during which the svstem
approximately follows an arc of a circle centered at 0 = 0 and Z = —1. Having assumed
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that T < 1, Z approaches
Zy=(01-THi-1 (4.1)

as o rises to the value T. (If, on the other hand, T > 1, the circular arc does not extend
as far as T, and o never attains the value T rather, the system slowly spirals toward the
spurt attractor. Thus the dynamical behavior does not exhibit distinct phases.)

Tte latency phase is characterized by having o = T+O(e), so that o is nearly constant
and Z evolves approximately according to the differential equation

Theretore, the shear stress and velocity profiles closely resemble those for a steady solution
with no spurt. but the solution is not truly steady because the normal stress difference
Z still changes. Integrating Eq. (4.2) from Z = Zvy to £ = —1 determines the latency
period. This period becomes indefinitely long when the forcing decreases to its critical
value: thus the persistence of the near-steady solution with no spurt can be very dramatic.
The solution remains longest near point L where Z = —1+7. This point may be regarded
as the remnant of the attracting node 4 and the saddle point B. Eventually the solution
enters the spurt phase and tends to the critical point C. Because C is an attracting spiral.
the stress oscillates between the shear and normal components while it approaches the
steady state.

Asvmptotic analysis carried out in Sec. 6 of [13] shows that when ¢ is sufficiently
small. system (JSO2) of [13] has the same asymptotic properties as system (JSO). Thus

system (JSQO) approximates (JS0O,) quantitatively as well as qualitatively.
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5. Physical Implications

Ore of the widely accepted explanations of spurt and similar observations is that the
presence of the wall affects the dynamics of the polymer system near the wall. Conceivably,
there could be a variety of “wall effects,” the most obvious is the loss of chemical bond
between wall and fluid, or wall slip [3]. Perhaps the most distinguishing feature of our
alternative approach is: it predicts that spurt stems from a material property of the
polymer and is not related to any external interaction. The spurt layer forms at the wall
in situations such as top jumping because the stresses are higher there; for the same reason,
of course, is chemical bonds would break at the wall;however, our approach predicts that
the layer of spurt points spreads into the interior of the channel on continued loading.
Layer thickness is predicted to grow continuously in loading to a thickness that should be
observable. provided secondary (two-dimensional) instabilities do not develop.

Our analysis suggests other ways in which experiments might be deviced o verify
the dependence of spurt on material properties: (i) produce multiple kinks with spurt
layer separated from the wall, (i1) produce hysteresis in flow reversal (Fig. 9). Our model
predicts circumstances under which a different path can be followed in sudden reversal of
the dow than would be followed by a sequence of solutions in which the pressure gradient
is reduced to zero and reloaded again (with the opposite sign) to a value of somewhat
smaller magnitude. Such behavior does not seem likely to be explainable by a wall effect.

Trze most important and perhaps the easiest experiment to perform to verfy our the-
ory is to produce latency. Our analysis predicts long latency times for data corresponding
to realistic material data: no sophisticated timing device would be required, nor would the
onset of the instability be hard to identify. The increase in throughput is predicted to be
so dramatic that simple visual inspection of the exit low would probably be sufficient.

6. Conclusions

Although our analysis applies only to the special constitutive models we have studied.
we expect that the qualitative features of our results appear in a broad class of non-
Newtonian fluids. Qur analysis has identified certain universal mathematical features in
the shear flow of viscoelastic fluids described by differential constitutive relations that
give rise to spur: and related phenomena. The key feature is that there are three widely
separated time scales. each associated with an important non-dimensional number (a. ¢,
and 1. respectively), when scaled by the dominant relaxation time, A™!. Each of these
time scales can be associated with a particular equation in system (JSO) [13]. The key
to understanding the dynamics of such systems is fixing the location of the discontinuity
in the strain rate induced by the non-monotone character of the steady shear stress vs.

strain rate.
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